Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cai-Feng Ding, ${ }^{\text {a }}$ Shu-Sheng

Zhang, ${ }^{\text {a* }}$ Bing-Qing Tian, ${ }^{\text {a }}$
Xue-Mei Li, ${ }^{\text {a }}$ Hong Xu^{b} and Ping-Kai Ouyang ${ }^{\text {b }}$
${ }^{\text {a College of Chemistry and Molecular }}$
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China

Correspondence e-mail:
zhangshush@public.qd.sd.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
$w R$ factor $=0.083$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Diaquabis(5-nitro-1 \boldsymbol{H}-benzimidazole- $\kappa \boldsymbol{N}^{3}$)copper(II) dinitrate

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$, the Cu atom, located on an inversion centre, is four-coordinated by the two O atoms from two water molecules and two N atoms from two benzimidazole ligands. The geometry around the Cu atom is nearly perfect square planar. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Benzimidazole derivatives and their coordination complexes are widely used for medicaments due to their biological activities (Ozbey et al., 1998; David et al., 1993). In this paper, we report the crystal structure of the title complex, (I).

In (I), the $\mathrm{Cu}^{\mathrm{II}}$ atom, which is located on a crystallographic inversion centre, is four-coordinated by the two O atoms from two water molecules and two N atoms from two benzimidazole ligands (Fig. 1). The geometry around the Cu atom is nearly perfect square planar, with $\mathrm{N}-\mathrm{Cu}-\mathrm{O}$ bond angles of 90.11 (6) and 89.89 (6) ${ }^{\circ}$. The bond lengths in (I) (Table 1) are within normal ranges (Allen et al., 1987). The two 6-nitro-3Hbenzimidazole ligands are each planar, with a dihedral angle of $0.44(11)^{\circ}$ between the benzene ring and the fused fivemembered ring.

The crystal packing is stabilized by intermolecular N $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The hydrogen-bonded cations form ribbons along the b axis (Fig. 2).

Experimental

To a solution of 6-nitro- 3 H -benzimidazole ($0.32 \mathrm{~g}, 1 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ was added cupric nitrate ($0.18 \mathrm{~g}, 1 \mathrm{mmol}$) in 10 ml distilled water. The mixture was stirred and refluxed for 1 h , then filtered. The filtrate was left to stand undisturbed at room temperature. Blue crystals appeared after 7 d .

Received 6 December 2004 Accepted 23 December 2004 Online 8 January 2005

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$

$M_{r}=549.87$

Triclinic, $P \overline{1}$
$a=7.2372$ (8) \AA
$b=8.1279$ (9) \AA
$c=9.1779(10) \AA$
$\alpha=69.491(2)^{\circ}$
$\beta=78.012(2)^{\circ}$
$\gamma=84.999(2)^{\circ}$
$V=494.57(9) \AA^{3}$
$Z=1$
$D_{x}=1.846 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2166
reflections
$\theta=2.4-27.5^{\circ}$
$\mu=1.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, blue
$0.35 \times 0.32 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.680, T_{\text {max }}=0.932$
3050 measured reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0487 P)^{2}\right.$ $+0.2519 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.083$
$S=1.04$
2155 reflections
168 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 2$	$1.9931(15)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.336(2)$
$\mathrm{Cu} 1-\mathrm{O} 1 W$	$2.0036(14)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.367(2)$
$\mathrm{O} 1-\mathrm{N} 3$	$1.223(2)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.320(2)$
$\mathrm{O} 2-\mathrm{N} 3$	$1.223(2)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.400(2)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	180	$\mathrm{~N} 2-\mathrm{Cu} 1-\mathrm{O} 1 W$	$90.11(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$89.89(6)$	$\mathrm{O} 1 W^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1 W$	180

Symmetry code: (i) $1-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	0.86	1.98	$2.799(2)$	158
$\mathrm{O}^{\mathrm{ii}} W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\text {iii }}$	$0.73(3)$	$2.12(3)$	$2.814(2)$	$161(3)$
$\mathrm{O}^{2} W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.73(3)$	$2.39(3)$	$2.882(2)$	$127(3)$
$\mathrm{O}^{2} W-\mathrm{H} 2 W 1 \cdots \mathrm{O}^{\text {iv }}$	$0.74(3)$	$2.13(3)$	$2.857(2)$	$167(3)$
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 7 \cdots 1^{\text {iv }}$	0.93	2.47	$3.301(2)$	149
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 3$	0.93	2.56	$3.050(2)$	114

Symmetry codes: (i) $1-x,-y,-z$; (ii) $1-x, 1-y,-z$; (iii) $x-1, y, z$; (iv) $x, 1+y, z-1$.

All H atoms were located in difference Fourier maps. The water H atoms were refined freely, while the remaining H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})$. A short intermolecular distance of 2.63 (1) \AA between the O atoms of the $\mathrm{NO}_{3}{ }^{-}$anions was observed in the crystal structure.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve

Figure 1
View of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Unlabelled atoms are related to labelled atoms by the symmetry operation (i) in Table 1; the inversion-related second nitrate anion is not shown.

Figure 2
Packing diagram of (I), showing the ribbons along the b axis. Dashed lines indicate hydrogen bonds.
structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the National Natural Science Foundation of China (No. 20275020 and 20475030) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 03BS081).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

David, S. S., Abhijit, M. \& David, M. P. (1993). Chem. Rev. 93, 2295-2316.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ozbey, S., Ide, S. \& Kendi, E. (1998). J. Mol. Struct. 442, 23-30.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl Cryst. 36, 7-13.

[^0]: (C) 2005 International Union of Crystallography

